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Abstract

In this paper, second order Godunov methods are reviewed. The early versions by Colella

and Woodward (PPM) and van Leer (MUSCL) are described in their original form. The

simplification of these by Roe, based on approximate Riemann solver, is then presented.

Attention is next given to the improvement in MUSCL due to Hancock and van Leer leading

to a fuller paper by Huynh. Finally, brief reference is made to TVD and ENO schemes due

to Harten.
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1. INTRODUCTION

Godunov's method for solving unsteady problems in Gas Dynamics is described and dis-

cussed at length in Holt (1984). In the succeeding decade several extensions of the method have

been proposed which increase its accuracy to second order while retaining the properties in the

original method of Monotonicity and absence of oscillations in shock capturing. The contribu-

tions most clearly related to the first Godunov scheme, notably by Colella and Woodward

(1984), Roe (1986) and van Leer (1979) are reviewed and added to the earlier account. At the

time of writing Holt (1984), these contributions had either not been completed or not yet recog-

nized as Godunov extensions. The revised chapter in my book (to appear as a 3rd edition) will

include these extensions and the present report is a preliminary version of this coverage.

The extensions treated specifically are the MUSCL (Monotonic Upstream-centered Scheme

for Conservation Laws) scheme of van Leer, the Piecewise Parabolic Method (PPM) of Colella

and Woodward and the characteristic based scheme of Roe. This report firstly deals with these

methods as originally presented. Thus PPM is described only in application to the unidirectional

wave equation, with indication of its extension to the Eulerian Gas Dynamic Equations. The

MUSCL scheme, as developed by van Leer (1979) is applied to the one dimensional Lagrangian

equations. Roe's scheme, freer than the other schemes of algebraic details, is presented is gen-

eral form. It is hoped that in the final version of the Godunov chapter both Colella and van Leer

will provide me with versions of their respective methods which are easier for Graduate Students

to understand. This final version will (as it should) cover TVD and ENO schemes.

1. Godunov Extensions The method proposed by Godunov (1959) for solving problems of one

dimensional gas Dynamics is of first order accuracy and has the important property of monotoni-

city. This requires that when the method is applied to an initial value problem in which the unk-

nown has monotonic behavior at the outset, then the calculated values of the unknown at all later

times remain monotonic in character. The monotonic property is crucial when dealing with

compression waves, to ensure that the only shock waves which develop result from local
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collapse of continuouscompressionsand excludespurioussocksresulting from faults in the

numericalscheme.

In its original form the methodwasappliedto onedimensionalshocktubeproblemsand

generalizedto calculatesteadyflow pasttwo andthreedimensionalbodies,including oneof the

earliestsolutionsto theblunt body problem. Theseapplicationsprovidedvaluableinformation

for basicengineeringanalysisbut thefirst orderaccuracylimited detailedflow field analysis.

Godunovprovedthat his original schemewasrestrictedto first order accuracyand could

not be extendedto higherorder without sacrificingthe monotonicityproperty. Godunov(with

colleagues,see Alalykin et al (1970)) then proposeda secondorder scheme,of predictor-

corrector type, appliedover successivehalf time steps.Thepredictorusesan implicit formula

extendingoverthreespacestepsandis carriedoutby a doublesweepprocessextendingbetween

two outsideboundaries.Thedatafrom thepredictorsteparesmoothedbeforebeingusedin the

corrector step, which is analogousto Godunov's first order scheme. Monotonicity is thus

preserved,but applicationshavebeenlimited to onedimensionalproblemsandanyshockwaves

or shocktype discontinuitiesare fitted sothat the schemeis tied to a moving network. Further

researchon this schemeis recommended.

In applying Godunov'sfirst schemeto unsteadyone dimensionalgasflow, the Eulerian

equationsof motion areused. At a given time the disturbedflow regimeis divided into cells

(usually of equalwidth) and the unknowns,determinedfrom the schemeup to that time, are

representedasstaircaseformationswith constantvaluesin eachcell (averagesof currentvalues

at the left and right boundariesof the cell). The solution is advancedby solving successive

Riemannproblemsin adjacentcells. The staircaserepresentationis responsiblefor the limita-

tion of Godunov's first methodto first order,althoughit alsoautomaticallycarriesmonotonic

character.



Severalauthorsattractedby Godunov'sfirst method,becauseof its relevanceto thephysics

of problemsin gasdynamics,haveproposedimprovementin its accuracyby removingthe res-

triction that mean valuesof unknownsin cells shouldbe constant. Insteadthey proposethat

unknownsshouldbe representedby linearor higherorderfunctionsof distanceacrossthe cell,

still solving Riemannproblemsat all boundaries.Sucha feature is commonto all so-called

higherorderGodunovmethodsidentifiedprincipallywith Colella,RoeandvanLeer.

Colella's approachis anoutgrowthof thePiecewiseParabolicMethod(PPM)appliedto the

one directional wave equation(Colella & Woodward(1984)). Roe (1986)usesa generalized

solutionof Riemannproblemsfor linearconservationlawswhilevanLeerbaseshis treatmenton

improvementsof hisMUSCL scheme(vanLeer(1979)).

We shall describeall theseextensionsof Godunovmethodsand alsorefer to two devices

for controlling monotonicity, the Total Variation Diminishing and ENO Schemesof Harten

(Davis(1984)).

2. Piecewise Parabolic Method.

Following Colella & Woodward (1984) we consider the one directional wave equation

o) = Uo( )

(2.1)

This equation is discretized - with equal space and time step A_, and At. The disturbed distribu-

tion of u is divided into equal cells j, j + 1 -- with intercell boundaries j + 1/2, as shown

j

_j+ _/,is the boundary between cells jand _-1

j+ 1
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Knowing u_, the valueof u (_j) at time tn,we wish to calculate

between_5+,/2and_5-1/-'at t = tn is

u3+1The averagevalueof u

1 _j../..
u_= A_----5.I __,_u_, tn d_

(2.2)

a j_,/,

Stability requires a At _<A _ in difference calculations. Following van Leer (1979) we construct a

piecewise polynomial interpolation for u (_) satisfying

n 1 _,/:

uj = A_--_.I _,_,j: u(_) d_

To apply this at time t = t n + At we substitute the exact solutions of Eq. (2.1)

U_+ 1 1 _ _.,J:
= A_----jI { j_,_.u(_- a_t)d_

and represent the integrand uniquely by a parabolic profile

(2.3)

u(_) = UL,5+ X [aus+ u6,5(1 - x)1 (2.4)

x- %j-,/2 <%j+,:2

The coefficients in this quadratic expression are uniquely determined in terms of u_ and limiting

values at the left and right sides of boundary _j+ 1/2

lim u (_) = UL.j

lim u (_) = UR,:

(2.5)



[ 1 1A uj = UR, j - UL, j, U6,j = 6 u_-_ (UL,j + UR,

To calculate UL._and UR4 we use an approximation for uj + ,/2which does not lie outside the range

(u 5, uj+ I). At smooth parts of the solution, away from extreme

UL, j+ 1 = UR, j= uj+ '/2

At all interfaces, if necessary, UL, j and UR. j are modified to ensure that u remains monotonic in

, n of u in nearby zones, we interpolate a value of uj+ 1/2from(_j- 1/2 _j+ v_). Given averages of uj

the indefinite integral of u, calculated at five consecutive points, fitted by a quartic which is dif-

ferentiated at _j+ ,/2- We then find

7 (U_+ n -_2 n u.n-- -- (Uj+ 2 3-uj+ ,A -_- uj+ 1) + l) (2.6)

In general UL,j+ 1 and UR,j are equal to uj+ 1/2. If the interpolation function gives values of uj+ ,/2

outside the range (UL.j+ 1 UR,_) then the values of the latter pair need to be reset to satisfy mono-

tonic behavior; details are given in Colella and Woodward (1984).

n+l
In the final step to get a formula for uj we introduce averages of the interpolation func-

tions

f_+ '/2.

f5n 1/2,

These evaluate to

I f _,_: u(_)d_
L (Y) = y J ,_. ,/.._ y

1 _J+'/:+ YU(_) d_
R(Y) = 7 I _+,/.

fj+ 1/2, L(Y) = UR. j -- Auj - (1 - _x) U6, j for x = y/A_j

(2.7)

(2.8)
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2 }j + (1 - _-x) u6,j+ ! for x = y/A_. 1

un+l n At I ,/2] (2.9)
5 =u 5 +a _5 _5-v2-_-

-- n

us+v:=fj+v,_, L(aAt) if a>_O

n R(-aAt) if a<0= f_ 1/2,

Generalizations of this scheme, applied to the one dimensional Lagrangian and Eulerian

equations include the following steps

1. Interpolation of the initial dependent variable distribution.

2. Use of characteristic equations to find dependent variable values on each side of zone

boundaries.

3. Solution of Riemann problems at boundaries to determine numerical fluxes there.

3. The MUSCL Scheme

Van Leer (1979) introduced a higher order Godunov method which preceded the PPM

method and also led to his flux or fluctuation splitting schemes. Its original version, called

Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL), was written by Wood-

ward and later refined in collaboration with van Leer.

The MUSCL scheme analysis is described by van Leer in terms of the Lagrangian form of

the one dimensional unsteady flow equations to be mapped subsequently onto an Euler grid.



vanLeer writestheLagrangianequations

0v 0(x%) _0 (3.1)
Ot _

O_.u_u+ xa _)___EP= F (3.2)
Ot _

/)E + /)(x%p) = uF + G (3.3)

_X
-- = u (3.4)
at

Here t is time, _ is the mass coordinate related to the space coordinate x and volume coordinate

% by

d_ = V -1 x a dx = V -1 d(xa+l) - V -I dX (3.5)
ot+l

0 plane

o_= 1 cylindrical symmetry

2 spherical

V, u, E and p denote specific volume, velocity, total energy and pressure respectively. F and G

represent source terms. If the specific internal energy is e

E = e + 1 u 2 (3.6)
2

The equation of state is

p = p (V, e) (3.7)

For an ideal perfect gas this simplifies to

e

P = (7- 1)_- (3.8)
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TheLagrangiansoundspeedis C where

relatedto thespatialsoundspeedby

adiabatic

(3.9)

C
C---B

V
(3.10)

The above equations can be written in characteristic form

dJ- = du - C -1 dp ={ aUVCx

d_ -x _on p = C, F-- characteristic (3.11)
dt

dJ +=du+C -ldp={ aUVCx
(3.12)

d_ x aon -- = C, 1-_ characteristic
dt

I _-P-I dtdS=dp+CzdV=G o_e
(3.13)

on -- - 0, streamline
dt

Across a shock wave the following jump equations are derived from the integral form of the

above governing equations.

+ W (V* - V) + (u* - u) = 0 (3.14)

+ W (u* - u) - (p* - p) = 0 (3.15)
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+ W (E* - E) - (u'p* ' up) = 0

Post shock values are indicated by an asterisk. The Lagrangian shock speed is + W.

(3.16)

Discretization

The disturbed region is divided into cells of thicknesses A_. Interface values are denoted

by integers. Values at a cell center and average values there (barred) are denoted by half

integers. The notation is shown in Table 1.

TABLE 1

Notation Used in the Grid

Symbol Definition

_i+_ i
)ti+_

Ai+l/2_, Ai+i/_
t o

t t

O,_+i/_, O,i+i/2

0i+1/2, Qi+l/_
Qi, qi

<Q>i

< Q >i+.lL2

,:x_q, A'Q

_i+ll2O/Ai+l/2_

Ai+il_OtAi+lllX

Mass, Euler, volume coordinate of zone boundary

(_i + _i+l ), mass-averaged mass coordinate of zone (_i, _i+l)

(Xi + Xi+l), volume-averaged volume coordinate of zone ()¢i, Xi+i)
_i+1 -- _i, Xi+I -- )Ci

Initial time level

t o + At, final time level

Mass-averaged value of Q in zone ({i,_i+1) at t0, t i

Volume-averaged value of Q in zone (xi, xi+i) at t0 tl
Value of Q at the boundary {i at t °, t 1

Average value of Q at the boundary {i during time step

Average value of Q in zone ({i,{i+q) during time step

0i+112 -- 0i-1/2, 0 i+1/2 -- 0 i-1/2

Mass-averaged value of aO/O_ in zone ({i,{i+i) at t °

Volume-averaged value of OQ/bx in zone (xi, _(i+i) at t °

We extract

Ai+'/:_----_i+l--_i , A i+,/:x=xi+ 1 -X i

In each slab, at the initial time t o we approximate initial values of V, u and E by linear distribu-

tions e.g.

V(t°,_)=Vi+'/2 + _i+-]:_-](_-_i+,/2), _i<_<_i+!
(3.17)

where
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vi + ,/:= (& + ,/,_)-1
_i+ I

.[ V(t O, _)d_ (3.18)

&+y_V

- (3.19)

= Ai+ ,/2V(t°, _)/Ai+,/2_

We retain only V, _, E, AV, Au and _E and these are to be updated.

We can replace E by p.

In practice we use

Ei+_/2=Ei+t/_- _ i+l/2+O (A_)

(3.20)

Note that slope values are independent of slab averages. Updated slab averages are derived by

integrating the basic equations.

At

Ai+v2_
(<x°tg>i+l -- <XO'U>i). (3.21)

_i+'/2 - At (<xCtp > _ <xO.P>i)
= Ui+l/2 Ai+t/2_ i+l

+ (<o_pV/x>i+_ h + <l_>i+V2) At,

(3.22)

Ei+_/2= Ei+,/: At (<x°tup>i+l - <x%p >i) + (3.23)
Ai+v2_

(<uF>i+v2 + <G>i+l/2 ) At;

These hold even when discontinuities exist within the slab. Time averages appearing in these
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equationsneedto beestimatedwith first orderaccuracy.

To update_V, Au and Ap we need to estimate interface values of V, u and p at the end of

this time interval and take their differences. For example

A i+l/2 V -- V TM - V i (3.24)

Limiting values at interfaces

These are given by

i+ right side i- left side.

- +l _i +_,/2v
Vi + = Vi+ 1/2 - 2

1-

%±=_i ±v2+ 7ai +_,/2u
1 -

Pi± = Pi ±'/2 + -_- Ai ± '/2 P

(3.25)

With these discontinuous values defined at interfaces we solve breakdown formulae (simplified

from those used in Godunov's first scheme) to find new values at interfaces. These are denoted

by u i , Pi , etc.

We also calculate the time derivatives.

• •/)u /)P and _)V

i i i±

from the equations of motion in characteristic form.

Details of Lagrangian scheme.

(1). Compute V±, u_+and p± --_ C_+etc.
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(2). Findu*, * *p , W+V+.

(3). get (_gu//)t)*(_)p/_)t)*(/)V/Ot)*from characteristiceqs.

(4). Integratethroughthehalf time stepw.r.t, time.Then interpolate.

(5). Usefull time stepwith averagedvalue.

(6). Remapon to theEuleriangrid.

Full formulaearegivenonpp. 112and 113in vanLeer(1979).

4. An improved MUSCL scheme for the Euler equations.

The principal obstacle to the extension of Godunov's original method for the Euler equa-

tions to second order accuracy is the preservation of monotonicity or monotonic property, in the

difference scheme used. This is accentuated when such extensions are based on shock capturing

rather than shock fitting, a feature common to virtually.all the higher order schemes.

To avoid breakdown of monotonic propert2_ a constraint must be introduced when, at any

stage in the computation, the distribution in a calculated quantity indicates a local discontinuity

or local extremum. Much effort has been spent on the identification of the optimum constraint

which will, at the same time, ensure monotonic properties and maintenance of second order

accuracy.

A recent paper by Huynh (1995) reviews the history of constraint improvement and pro-

poses a new constraint which appears to be closer to the ideal required. He incorporates this in a

new approach to the numerical solution of the one dimensional Euler equations by a second

order Godunov method. A basic feature of this is the simplification of the second order upwind

scheme in MUSCL due to Hancock (1980). We begin, with his description of this for the simple
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massconvectionequation.

Hancock's predictor corrector scheme.

Consider the simple linear one dimensional convection equation

_--P- + a _--P--= 0 (4.1)
3t 3x

We solve this numerically by a MUSCL scheme in a network t=nx, x = jh where integral

values of j correspond to cells and half integral values to cell boundaries or faces•

According to the original MUSCL scheme (van Leer (1979)) the following steps are exe-

cuted to update the cell interface values from time t=n't to t=(n+l)x

a) Pi+vzn= pin + 21 Ap_. Space extrapolation to cell interfaces

b) - n+lA n 17 " nP _-,/2 = P_-IA+ _- P_-V2Time extrapolation to t = (n + 1/2) 't

where

c) n+l n " nP_-,/2 = p_.l/_ + "¢P_-v2

Face value of p at t = (n+l)'t to be used in interface differencing•

d) _n+l aLf.,n+'/2 ,.n+'/2"]"J k L

Control volume updating of cell mean value.

e) Ap, n+l ,. n+l ,., n+l• = t'_-'/2 - _'5-1/: New slope

f) Limit Api n+l
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The iterativeprocessneededto carryoutstepsa),b) & c) is simplified by Hancockby the

following two stepmethod.

a) p;+l = pin _ a _- Apin Extrapolation of cell mean values forward in time, using PDE.

b) pi+l/2-n+V2= 1[ np5 + P3+l] + -2-1A py Select upstream cell values at n+1/2

c) v_.l/,"n+l= Ps-n+l+ 2-1 Ap_' Select upstream face values at n+l

Steps d) e) and f) follow as before.

This simplified procedure is extended to the one dimensional Euler equations by van Leer

in van Albada, van Leer and Roberts (1982).

The van Leer version of the higher order Godunov method comprises two main steps,

reconstruction and evolution. In the first step the data.obtained from the most recent difference

calculation are fitted by piecewise linear representation. The fitting is straightforward over

regions in which the data are smooth and monotonic. At discontinuities, or local extrema the

procedure must be modified to preserve monotonic behavior in further computation. At such

locations constraints are imposed and the details of these will be given.

The second evolution step uses an upwind procedure developed from the MUSCL scheme.

Let W represent a complete set of state variables such as p, pu, p or p, u, p.

The initial distribution of W is represented in a piecewise linear fashion by

(Aw) 
w" (13)= w; + (n - qj) Aq

4.2

where
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(Au)j n = C " ave

q_-I - q_ q_ - q_-I

C C
4.3

and

where ave (a, b) is an average specified in van Albada et al (1982).

4.4

Then

i
[ incanthenbef°un fr°mtheEu'erequati°n

4.5

The cell averages can now be determined, at time tn+v, leading to boundary values.

_w_+'/_=w__+ -F j
4.6

W n+'/2 +v2 [ W_J n 4.7

The vector U of conserved variables ( p,pu, e) can then be found from

,,f,,,n*V, I

These in turn give the values of time centered fluxes at cell boundaries.

4.8

5. Huynh's Improvement of the MUSCL Scheme.

The generalization of Hancock's improvement of the MUSCL scheme by Huynh (1985) is
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carriedout in threestages,discretization,slopeconstraintandRiemannsolver. In thediscretiza-

tion procedurethe Eulerian equationsfor onedimensionalunsteadyflow, in conservationform,

arewrittenasdifferenceequationsusinga mid-pointrule. Here,thefluxesat adjacentcell boun-

dariesneedto beevaluatedat a half time step,after breakdown,by solvinga Riemannproblem.

Therequiredinitial valuesof theconservationvariablesoneithersideof acell boundaryarecal-

culatedfrom linear representationsin spaceand time. The Riemannproblem usesRoe flux-

differencesplitting (Roe(1981) andRoe(1986)).

Slopeconstraintis neededto maintainthe monotoniccharacterof thenumericalsolution

for the conservationvariables,as this is advancedin time. The increasedaccuracyof the

Godunovmethod,consequenton its upgradingto secondorder, is achievedat the the price of

generationof local maximaor otherviolationsof monotonicbehaviorwithin thefinite difference

network. The slope constraintstagedescribesthe procedurefor correcting theseviolations.

Huynh's descriptionof this in algebraicform is complicatedand details can be found in his

paper. It is somewhatmoregeneralthan theprocedureshowngraphicallyby van Leer (1979)

which isreproducedlater.

The approximateRiemannSolverproposedby Roe(1981, 1986)is theprincipal tool used

by Huynhin thethird stageof his schemeandis presentedherein Roe'scompactform.

In essencethe improvementin the MUSCL schemeby Huynh restson a recognitionby

Hancockthat, in the two half-time stepstakenin MUSCL, the Riemannproblemonly needsto

besolvedat oneof thesesteps.In Huynh'sformulationthis is doneat thehalf time step.

Discretization

Huynh uses the Eulerian equations of one dimensional unsteady flow in both conservation

and primitive form. For a perfect gas, with constant specific heat ratio T the conservation equa-

tions are
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_U _gF(U)
-- + - 0 (5.1)

_t o_x

where U =

with

0Zu]f°UplF= pu+

L(e+p)J

1
e = p/(?- 1) + _ pu 2

Z
(5.2)

The primitive variables are

V= (p, u, p)T (5.3)

From the governing equations for the primitive or conservation

variables we can derive the equations in characteristic form (see 1.3 in Holt (1984)).

To discretize Eq. (5.1) introduce a uniform mesh defined by xj =jh, j = 0, I, 2---

tn = n x n= 0, 1, 2 • • • where h is the mesh size and x the time step. The cell boundaries are at

1

x. I = (J + _-) h. Let Ujn be an approximation to the average value of U in the jth cell at time tn
J+7

Given U_' we wish to

1

X j+ "_-

1
Uj n= --ff j u (x, t n) dx (5.4)

1

xi 2

determine II n+l-5 at the end of time step x, subject to the CFL condition

max(I uj I +cj --_<1
j h

(5.5)

where cj is the local speed of sound.
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DifferencingEq (5.1)usingthemid-pointrulegives

F

u? L
(5.6)

To solve Eq. (5.1) we need to determine the fluxes F. I at the half time step from the initial
j+_-

data Uj n or, equivalently, from V;.

In each j th cell we represent the primitive variable V(x, t) by a linear function

Rs(x,t ) = Vj + (x - xj) Sj + (t - tn) Tj (5.7)

where
o3V OV

Sj = _X (Xj, tn), .Tj = at (xj, tn)

Sj is known from the initial distribution of V and Tj can be determined from the primitive form

of Eq (5.1)

Tj =- (Ap)j Sj (5.8)

where

At the interface j + 1/2Eq (5.7) gives

Ap= u 1

7P

(5.9)

1
n+- h x

Rj(x. l,t 2)=Vj+_Sj+-_-Tj
j+-_-

(5.10)

Eq (5.7) gives values of the primitive variables on the left side of the interface j + 1/2, resulting

from analysis in cell j. Similar analysis in cell j + 1 gives the values of the primitive variables on
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the right sideof the interfacej + 1/2.Thesecalculationsprovide the initial datafor a Riemann

problem to be solved on interfacej + IA at time (n + I,,5)'r. To this end Huynh uses Roe's

Riemann solver.

Riemann Solver

Huynh uses a generalized version of Roe's method for solving Riemann problems which

arise in Godunov's method (first or second order versions), approximately. We present a sum-

mary of Roe's version (1981), Roe (1986).

Using Huynh's notation Roe uses a locally linearized form of Eqs (5.1)

U t + AU x = 0 (5.11)

where A is a constant Jacobian matrix 3F/3U. If U L and U R are the interface values of U on

either side of (j + V2)h the flux difference across the interface can be written

F R - F L = Z (_k)_k ek (5.12)

where ( e k ) are the right eigenvectors of A. Each term on the right of Eq. (5.12) gives the effect

of the k th wave crossing the interface, with o_k denoting its strength and Kk ( eigenvalue of A) its

speed. The flux at the interface (j + V2)h can be computed either from summation over negative

or over positive wave speeds. Roe takes the average of the two evaluations to give

F 1 (UL, UR) = 1/2(FL + FR) - Y_ctkI_'k I ek (5.13)
7 7

To apply (5.13) to the present non-linear problem we use a matrice A (U 2, UR) the eigenvalues

and eigenvectors of which not only satisfy (5.12) identically but also

U R - U L = k_ Otk e k (5.14)

Under these conditions the method, for non-linear problems, gives the exact solution when U L
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andUn areonoppositesidesof a shockwaveor contactdiscontinuity.

Theexpressionsfor ctk, _'k and ek, derived by Roe (1981) are

I'le3 = u+a.

Lh+Q J
(5.15)

_'1 ----fi -- a., _2 -- u, _'3 = fi + A, (5.16)

1 1
t_ l = _ [Ap - paAu] (X2 = -'q- -[_2 Ap - Ap] (5.17)

2_2 ' :_,. '

1
0% = -- [Ap + p_Xul,

2_ 2

where

_2 = PL PR,

pLA UL + pRI/2 UR

= 0'/2hL + pi_hR

p'_ + 0'/2 ' (5.18)L

a: = (7- 1) [fi - ± a2l.
2

When we introduce (5.15) thro, (5.18) into (5.13) we obtain an explicit expression for the

1

required fluxes F.n+IT1and Fn+! 2- in 5.6.

J-7 J+7

Monotonicitv constraints



-21 -

On completion of a time step in the MUSCL scheme (original or improved version) the

representation of the unknowns by linear functions in successive Cells must be checked to ensure

that no local violations of monotonic behavior take place. This condition is most simply

expressed by van Leer (1977). Namely, in terms of Eq. (5.7) at time t = t n, the linear x function

must not take values outside the range spanned by the neighboring mesh averages.

Fig. 1 ( taken from van Leer (1977)) shows the three possible violations. In section (1) of

this a local decrease at 0 violates monotonicity. To remedy this the slopes in (-1, 0) and in (1, 2)

cells are reduced to zero while the slope in (0,1) is reduced as shown by the solid line. In section

(2), where a local extremum is attained at boundary 1 the slope in (0,1) is reduced to zero. In

section (3) the sign of the slope in (0,1) is opposite to the neighboring slope signs in (-1, 0) and

(1,2) and is therefore reduced to zero. These corrections can all be expressed in algebraic form

and are detailed in Huynh (1995).

2

131

-1 0 1 2

Fig. 1

6. TVD and ENO Schemes

A later and somewhat different study of higher order Godunov methods was initiated by

Harten (1983). This started with introduction of the Total Variation Diminishing (TVD)
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schemesandfollowedby this broaderEssentiallyNon-Oscillatory(ENO)schemes.

Davis (1984)providesanoutlineof theTVD schemeappliedto theonedimensionalwave

equation.

ConsidertheInitial ValueProblem

ut + f(u)x= ut+ a(u)ux= 0

df(u)
a(u)- (6.1)

du

u(x, 0) = u0 (x)

where u 0 (x) is of total bounded variation.

--_<X<OO

We seek a weak solution to this problem with the following properties.

(1) No new maxima or minima in u(x) may develop

(2) The value of any local minimum does not fall while that of any local maximum does not

rise. The Total Variation of the solution is defined by

TVu(x,t) = sup Z I u(xk+ l,t) - u(xk,t) I
k

where the supremum is taken over all partitions of the real line.

The monotonicity property requires that the total variation in x of u(x, t) does not increase

with t so that

TV{u(t2) } < TV{u(tl) } for all t2 > t 1.

Now consider an explicit finite difference scheme in conservation form applied to IVP - 6.1
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U n÷l = L" U n (6.2)

where L is an explicit finite difference operation.

The scheme is said to be Total Variation Diminishing if

TV {U n+l } = TV{L- U n} _<TV {U n } (6.3)

Furthermore, a scheme is Monotonicity Preserving if L has the following property. If U n is

a monotonic mesh function then L- U n is also monotonic. Finally Harten proved theorem:

A Total Variation Diminishing Scheme is Monotonicity Preserving.

Harten (1986) notes that TVD schemes, which include the MUSCL scheme, are second

order accurate only in the L l sense. To increase this accuracy he introduces the Essentially Non-

Oscillatory (ENO) in which the Total Variation requirement on the unknown, at the end of a

time step, is relaxed in the reconstruction phase. ENO schemes can be accurate to any finite

order.

Conclusions

Extensions to second-order accuracy of Godunov's method for solving Gas Dynamics

equations numerically are reviewed. Particular attention is given to the MUSCL scheme and

its recent improvement by Huynh due to a simplification first noticed by Hancock.

The author is indebted to Colella, Hancock, Huynh, Roe and van Leer for providing

original papers and to van Leer for enlightening discussion. The author thanks M.Y. Hussaini

for arranging visits to ICASE, where most of the paper was assembled.
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